USN

\square

Fifth Semester B.E. Degree Examination, Aug./Sept. 2020 Analog Communication

Time: 3 hrs .
Max. Marks: 100
Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

PART - A

1 a. List the properties of Autocorrelation function.
(04 Marks)
b. A random variable has a probability density function $F_{X}(x)=\frac{5}{4}\left(1-x^{4}\right) \quad 0 \leq x \leq 1$

0 Elsewhere
Find i) $\mathrm{E}[\mathrm{X}]$ ii) $\mathrm{E}[4 \mathrm{X}+2]$ and iii) $\mathrm{E}\left[\mathrm{X}^{2}\right]$.
(06 Marks)
c. The random process $X(t)=A \cos \left(2 \pi f_{c} t+\theta\right)$, where θ is the random variable, that is uniformly distributed over the interval $(-\pi, \pi)$. Determine
i) The auto correlation function $\mathrm{X}(\mathrm{t})$
ii) Power spectral density
iii) Average power of $X(t)$.
(10 Marks)
2 a. Determine the optimal efficiency of amplitude modulation.
(06 Marks)
b. What is the importance of COSTAS receiver? Explain its working principles with a suitable block diagram.
(08 Marks)
c. Consider the wave obtained by adding a non - coherent carrier $A_{C} \operatorname{Cos}\left(2 \pi f_{c} t+\phi\right)$ to the DSBSC waver $m(t) \cos 2 \pi f_{c} t$, where $m(t)$ is the message waveform. This waveform is applied to as ideal envelope detector. Find the resulting detector output. Evaluate the output for
i) $\phi=0$
ii) $\phi \neq 0$ and $\mathrm{m}(\mathrm{t}) \ll \frac{\mathrm{A}_{\mathrm{c}}}{2}$.
(06 Marks)

3 a. Highlight the advantages of Quadrature amplitude multiplexer and explain its QAM system with a suitable block diagram.
(06 Marks)
b. Determine the Hilbert Transform of the function given below :

$$
g(t)=\left\{\begin{array}{lc}
1 & \text { for } \quad|t| \leq \frac{T}{2} \\
0 & \text { Elsewhere }
\end{array}\right.
$$

(04 Marks)
c. Generate SSBSC wave using frequency discrimination method with a suitable block diagram.
(10 Marks)
a. Describe the generation and detection of VSB with a necessary block diagram.
(09 Marks)
b. Let the incoming narrow - band signal of bandwidth 10 KHz and mid - band frequency which may lie in the range $0.535-1.605 \mathrm{MHz}$. It is required to translate this signal to a fixed frequency band centered at 0.455 MHz . Determine the range of tuning that must be provided in the local oscillator.
(05 Marks)
c. Describe the working principle of frequency division multiplexing.
(06 Marks)

PART - B

5 a. With a neat circuit diagram, describe the direct method of generating FM. Also explain feedback scheme for frequency stabilization of a frequency modulator in direct method.
(10 Marks)
b. The equation for an FM wave is given by $\mathrm{s}(\mathrm{t})=10 \sin \left[5.7 \times 10^{8} \mathrm{t}+5 \sin 12 \times 10^{3} \mathrm{t}\right]$. Calculate i) Carrier frequency ii) Modulating frequency iii) Modulation index iv) Frequency deviation and v) Power dissipated in 100Ω resistor.
c. Explain Carson's rule.

6 a. Explain the working principle of balanced slope detector with a suitable circuit.
(08 Marks)
b. Explain with relevant block diagram FM stereo multiplexing system.
(08 Marks)
c. Explain Threshold in FM.
(04 Marks)
7 a. Define and explain the following :
i) Noise equivalent bandwidth ii) Equivalent Noise bandwidth.
(08 Marks)
b. Three amplifiers have the following specifications :

Amplifier $1 \quad \mathrm{~F}_{1}=8 \mathrm{~dB} \quad \mathrm{G}_{1}=42 \mathrm{~dB}$
Amplifier $2 \quad \mathrm{~F}_{2}=9 \mathrm{~dB} \quad \mathrm{G}_{2}=38 \mathrm{~dB}$
Amplifier $3 \quad \mathrm{~F}_{3}=5 \mathrm{~dB} \quad \mathrm{G}_{3}=22 \mathrm{~dB}$
The amplifiers are connected in cascade. Find the overall Noise figure.
(06 Marks)
c. Deduce FRII's formula.

8 a. Derive an expression for figure of merit of an AM receiver, with envelope detector.
b. Explain the working principle of pre - emphasis and de - emphasis in FM system and high - light their applications.
(10 Marks)

